Code: CE2T2, CS2T1, EC2T1, EM2T2, EE2T1, IT2T3, ME2T1, AE2T1

I B. Tech-II Semester-Regular Examinations - July 2014

ENGINEERING MATHEMATICS - II (Common for All Branches)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

1. a) Test for constancy and solve the following equations

$$4x+2y+z+3w=0$$
 $6x+3y+4z+7w=0$
 $2x+y+w=0$

7 M

b) Reduce the following matrix into its normal form and hence find its rank

$$\begin{pmatrix}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{pmatrix}$$

7 M

- 2. a) Show that sum of all eigen values of a matrix is equal to the sum of the elements of the principal Diagonal. 7 M
 - b) Verify Cayley -Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 find its inverse. Also express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as a linear polynomial in A

7 M

3. a) Obtain the Fourier Series for the function

$$f(x) = \begin{cases} \pi x, & 0 \le x \le 1\\ \pi (2 - x), & 1 \le x \le 2. \end{cases}$$
Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

b) Obtain cosine and sine series for the f(x) = x in the interval $0 \le x \le \pi$.

Hence show that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
 7 M

4. a) Express $f(x) = \begin{cases} 1, & for \ 0 \le x \le \pi \\ 0, & for \ x \ge \pi \end{cases}$

As a sine integral and hence evaluate

$$\int_0^\infty \frac{1 - \cos \pi \lambda}{\lambda} \sin(x\lambda) \, d\lambda$$
 7 M

b) Solve the integral equation

$$\int_0^\infty f(\theta) \cos \alpha \theta \ d\theta = \begin{cases} 1 - \alpha, for \ 0 \le \alpha \le 1 \\ 0, for \ \alpha > 1 \end{cases}$$
 7 M

5. a) Find the inverse Z-transform of
$$\frac{8z-z^3}{(4-z)^3}$$
 7 M

b) Solve the difference equation

$$y_{n+2} - 6y_{n+1} + 8y_n = 2^n + 6n$$
 by using Z-transform.

6. a) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of gamma function and evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$ 7 M

Page 2 of 3

b) Prove that
$$\iint_D x^{l-1} y^{m-1} dx dy = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m+1)} h^{l+m} \text{ where}$$
D is the domain $x \ge 0, y \ge 0 \& x+y \le h$ 7 M

7. a) Fit a parabola of the form $y = a + bx + cx^2$ to the following data

	•	•				
	X	1	2	3	4	
1	y	1.7	1.8	2.3	3.2	

7M

b) The voltage v across a capacitor at a time t seconds is given by the following table

t	0	2	4	6	8
V	150	63	28	12	5.6

7M

Use the method of least squares, to fit a curve of the form $v = ae^{kt}$ to this data.

8. a) Form the partial differential equation of $z = f_1(y + 2x) + f_2(y - 3x)$ by the eliminating arbitrary functions.

b) Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
 7 M